image banner
Thống kê truy cập
  • Đang online: 1
  • Hôm nay: 1
  • Trong tuần: 1
  • Tất cả: 1
Đề thi chuyên toán Hà Nội

ĐỀ THI TUYỂN SINH LỚP 10 HỆ THPT CHUYÊN ĐHKHTN, ĐHQG HÀ NỘI
NĂM HỌC: 2007 - 2008. 
Thời gian: 150 phút

Câu 1. (3 điểm)

Giải hệ phương trình và phương trình sau:

30 đề thi tuyển sinh vào lớp 10 chuyên môn Toán

Câu 2. (3 điểm)

a) Giả sử x1, x2 là 2 nghiệm dương của phương trình x2 – 4x + 1 = 0. Chứng minh rằng x1 + xlà một số nguyên.

b) Cho a, b là các số nguyên dương thỏa mãn a + 1 và b + 2007 đều chia hết cho 6. Chứng minh rằng 4a + a + b chia hết cho 6.

Câu 3. (3 điểm)

Cho M là trung điểm của cung nhỏ AB của đường tròn tâm O (AB không phải là đường kính). C và D là 2 điểm phân biệt, thay đổi nằm giữa A và B. Các đường thẳng MC, MD cắt (O) tương ứng tại E, F khác M.

a) Chứng minh các điểm C, D, E, F nằm trên một đường tròn.

b) Gọi O1 và O2 lần lượt là tâm các đường tròn ngoại tiếp các tam giác ACE và BDF. Chứng minh rằng khi C và D thay đổi trên đoạn AB thì giao điểm của hai đường thẳng AO1 và BO2 là một điểm cố định.

Câu 4. (1 điểm)

Cho a, b, c là các số thực dương thỏa mản abc = 1. Chứng minh rằng:
30 đề thi tuyển sinh vào lớp 10 chuyên môn Toán